669 research outputs found

    Cyclodextrin polyurethanes polymerised with carbon nanotubes for the removal of organic pollutants in water

    Get PDF
    Organic compounds are some of the major pollutants of water worldwide. They can be toxic or carcinogenic even at low concentrations. The non-reactivity of these species makes it difficult to remove them from water, particularly when present at concentration levels of nanograms per litre (ng·ℓ-1) or lower. Reasonably inexpensive yet effective methods for the removal of these organic pollutants to below ppb levels are therefore required.Insoluble cyclodextrin polyurethanes have demonstrated the ability to remove organic species from water at concentration levels of nanograms per litre. Carbon nanotubes have also been reported to efficiently adsorb some organic molecules such as dioxins and polychlorinated dibenzo-furans. However, these nanotubes are currently too expensive to be used on their own in water treatment.An investigation into the use of cross-linked cyclodextrin polyurethanes copolymerised with functionalised multiwalled carbon nanotubes as adsorbents for organic pollutants has yielded very useful results which may have an impact in future water treatment applications.Keywords: multiwalled carbon nanotubes, cyclodextrins, polymer composites, adsorption, trichloroethylene, endocrine disruptor

    Lower bounds for several online variants of bin packing

    Full text link
    We consider several previously studied online variants of bin packing and prove new and improved lower bounds on the asymptotic competitive ratios for them. For that, we use a method of fully adaptive constructions. In particular, we improve the lower bound for the asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201

    A nonsmooth frictional contact formulation for multibody system dynamics

    Get PDF
    We present a new node-to-face frictional contact element for the simulation of the nonsmooth dynamics of systems composed of rigid and flexible bodies connected by kinematic joints. The equations of motion are integrated using a nonsmooth generalized-α time integration scheme and the frictional contact problem is formulated using a mixed approach, based on an augmented Lagrangian technique and a Coulomb friction law. The numerical results are independent of any user-defined penalty parameter for the normal or tangential component of the forces and, the bilateral and the unilateral constraints are exactly fulfilled both at position and velocity levels. Finally, the robustness and the performance of the proposed algorithm are demonstrated by solving several numerical examples of nonsmooth mechanical systems involving frictional contact.Fil: Galvez, Javier. Université de Liège; BélgicaFil: Cavalieri, Federico José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Cosimo, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina. Université de Liège; BélgicaFil: Brüls, Olivier. Université de Liège; BélgicaFil: Cardona, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentin

    Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine the prevalence of carriage of respiratory bacterial pathogens, and the risk factors for and serotype distribution of pneumococcal carriage in an Australian Aboriginal population.</p> <p>Methods</p> <p>Surveys of nasopharyngeal carriage of <it>Streptococcus pneumoniae</it>, non-typeable <it>Haemophilus influenzae</it>, and <it>Moraxella catarrhalis </it>were conducted among adults (≥16 years) and children (2 to 15 years) in four rural communities in 2002 and 2004. Infant seven-valent pneumococcal conjugate vaccine (7PCV) with booster 23-valent pneumococcal polysaccharide vaccine was introduced in 2001. Standard microbiological methods were used.</p> <p>Results</p> <p>At the time of the 2002 survey, 94% of eligible children had received catch-up pneumococcal vaccination. 324 adults (538 examinations) and 218 children (350 examinations) were enrolled. Pneumococcal carriage prevalence was 26% (95% CI, 22-30) among adults and 67% (95% CI, 62-72) among children. Carriage of non-typeable <it>H. influenzae </it>among adults and children was 23% (95% CI, 19-27) and 57% (95% CI, 52-63) respectively and for <it>M. catarrhalis</it>, 17% (95% CI, 14-21) and 74% (95% CI, 69-78) respectively. Adult pneumococcal carriage was associated with increasing age (p = 0.0005 test of trend), concurrent carriage of non-typeable <it>H. influenzae </it>(Odds ratio [OR] 6.74; 95% CI, 4.06-11.2) or <it>M. catarrhalis </it>(OR 3.27; 95% CI, 1.97-5.45), male sex (OR 2.21; 95% CI, 1.31-3.73), rhinorrhoea (OR 1.66; 95% CI, 1.05-2.64), and frequent exposure to outside fires (OR 6.89; 95% CI, 1.87-25.4). Among children, pneumococcal carriage was associated with decreasing age (p < 0.0001 test of trend), and carriage of non-typeable <it>H. influenzae </it>(OR 9.34; 95% CI, 4.71-18.5) or <it>M. catarrhalis </it>(OR 2.67; 95% CI, 1.34-5.33). Excluding an outbreak of serotype 1 in children, the percentages of serotypes included in 7, 10, and 13PCV were 23%, 23%, and 29% (adults) and 22%, 24%, and 40% (2-15 years). Dominance of serotype 16F, and persistent 19F and 6B carriage three years after initiation of 7PCV is noteworthy.</p> <p>Conclusions</p> <p>Population-based carriage of <it>S. pneumoniae</it>, non-typeable <it>H. influenzae</it>, and <it>M. catarrhalis </it>was high in this Australian Aboriginal population. Reducing smoke exposure may reduce pneumococcal carriage. The indirect effects of 10 or 13PCV, above those of 7PCV, among adults in this population may be limited.</p

    Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis

    Get PDF
    Individuals with Atopic dermatitis (AD) are highly susceptible to Staphylococcus aureus colonization. However, the mechanisms driving this process as well as the impact of S. aureus in AD pathogenesis are still incompletely understood. In this study, we analysed the role of biofilm in sustaining S. aureus chronic persistence and its impact on AD severity. Further we explored whether key inflammatory cytokines overexpressed in AD might provide a selective advantage to S. aureus. Results show that the strength of biofilm production by S. aureus correlated with the severity of the skin lesion, being significantly higher (P < 0.01) in patients with a more severe form of the disease as compared to those individuals with mild AD. Additionally, interleukin (IL)-β and interferon γ (IFN-γ), but not interleukin (IL)-6, induced a concentration-dependent increase of S. aureus growth. This effect was not observed with coagulase-negative staphylococci isolated from the skin of AD patients. These findings indicate that inflammatory cytokines such as IL1-β and IFN-γ, can selectively promote S. aureus outgrowth, thus subverting the composition of the healthy skin microbiome. Moreover, biofilm production by S. aureus plays a relevant role in further supporting chronic colonization and disease severity, while providing an increased tolerance to antimicrobials

    Gene family information facilitates variant interpretation and identification of disease-associated genes in neurodevelopmental disorders

    Get PDF
    Background Classifying pathogenicity of missense variants represents a major challenge in clinical practice during the diagnoses of rare and genetic heterogeneous neurodevelopmental disorders (NDDs). While orthologous gene conservation is commonly employed in variant annotation, approximately 80% of known disease-associated genes belong to gene families. The use of gene family information for disease gene discovery and variant interpretation has not yet been investigated on a genome-wide scale. We empirically evaluate whether paralog-conserved or non-conserved sites in human gene families are important in NDDs. Methods Gene family information was collected from Ensembl. Paralog-conserved sites were defined based on paralog sequence alignments; 10,068 NDD patients and 2078 controls were statistically evaluated for de novo variant burden in gene families. Results We demonstrate that disease-associated missense variants are enriched at paralog-conserved sites across all disease groups and inheritance models tested. We developed a gene family de novo enrichment framework that identified 43 exome-wide enriched gene families including 98 de novo variant carrying genes in NDD patients of which 28 represent novel candidate genes for NDD which are brain expressed and under evolutionary constraint. Conclusion This study represents the first method to incorporate gene family information into a statistical framework to interpret variant data for NDDs and to discover new NDD-associated genes

    Quantifying trends in disease impact to produce a consistent and reproducible definition of an emerging infectious disease.

    Get PDF
    The proper allocation of public health resources for research and control requires quantification of both a disease's current burden and the trend in its impact. Infectious diseases that have been labeled as "emerging infectious diseases" (EIDs) have received heightened scientific and public attention and resources. However, the label 'emerging' is rarely backed by quantitative analysis and is often used subjectively. This can lead to over-allocation of resources to diseases that are incorrectly labelled "emerging," and insufficient allocation of resources to diseases for which evidence of an increasing or high sustained impact is strong. We suggest a simple quantitative approach, segmented regression, to characterize the trends and emergence of diseases. Segmented regression identifies one or more trends in a time series and determines the most statistically parsimonious split(s) (or joinpoints) in the time series. These joinpoints in the time series indicate time points when a change in trend occurred and may identify periods in which drivers of disease impact change. We illustrate the method by analyzing temporal patterns in incidence data for twelve diseases. This approach provides a way to classify a disease as currently emerging, re-emerging, receding, or stable based on temporal trends, as well as to pinpoint the time when the change in these trends happened. We argue that quantitative approaches to defining emergence based on the trend in impact of a disease can, with appropriate context, be used to prioritize resources for research and control. Implementing this more rigorous definition of an EID will require buy-in and enforcement from scientists, policy makers, peer reviewers and journal editors, but has the potential to improve resource allocation for global health

    Benthic and Hyporheic Macroinvertebrate Distribution Within the Heads and Tails of Riffles During Baseflow Conditions

    Get PDF
    The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in-situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenization of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle head and tail. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale

    Defining the functional traits that drive bacterial decomposer community productivity

    Get PDF
    Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity–ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade β-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates
    corecore